Table of contents
If we take a look at a so called infinitesimal element of size Δ x \Delta x Δ x then at some arbitrary point x x x we have a displacement u ( x ) u\left(x\right) u ( x ) and at the other end of that small element, at the point x + Δ x x+\Delta x x + Δ x we have the displacement u ( x + Δ x ) u\left(x+\Delta x\right) u ( x + Δ x ) . The engineering strain is thus defined as
ε : = e l o n g a t i o n o r i g i n a l l e n g t h = u ( x + Δ x ) − u ( x ) Δ x → d u d x \varepsilon :=\dfrac{\mathrm{elongation} }{\mathrm{original} \mathrm{length} }=\dfrac{u\left(x+\Delta x\right)-u\left(x\right)}{\Delta x}\to \dfrac{d u}{d x} ε := original length elongation = Δ x u ( x + Δ x ) − u ( x ) → d x d u
In 1D the relation between the strain and stress is done using the linear elasticity modulus (tensile modulus or Young's modulus) E E E
σ = E ε \boxed{\sigma =E\varepsilon} σ = Eε
Given some shear stress τ \tau τ the element will be deformed in a way which can be described using the shear angle γ \gamma γ . The Hookean constitutive relationship is give by
τ = G γ \boxed{\tau = G\gamma} τ = G γ
where G G G is known as the shear modulus.
Adding tensile deformation to the mix we get the general state of deformation on a infinitesimal element.
In two dimensions we will have two tensile deformations (described by u x u_x u x and u y u_y u y ) and two shear deformations (described by γ 1 \gamma_1 γ 1 and γ 2 \gamma_2 γ 2 ).
The strain in the x-direction can be derived from the infinitesimal element getting displaced
u x ( x + Δ x , y ) − u x ( x , y ) Δ x → ∂ u x ∂ x = : ε x \dfrac{u_x \left(x+\Delta x,y\right)-u_x \left(x,y\right)}{\Delta x}\to \dfrac{\partial u_x }{\partial x}=:\varepsilon_x Δ x u x ( x + Δ x , y ) − u x ( x , y ) → ∂ x ∂ u x =: ε x
and in the y-direction
u y ( x , y + Δ y ) − u y ( x , y ) Δ y → ∂ u y ∂ y = : ε y \dfrac{u_y \left(x,y+\Delta y\right)-u_y \left(x,y\right)}{\Delta y}\to \dfrac{\partial u_y }{\partial y}=:\varepsilon_y Δ y u y ( x , y + Δ y ) − u y ( x , y ) → ∂ y ∂ u y =: ε y
The shear strain is derived by
u y ( x + Δ x , y ) − u y ( x , y ) Δ x → ∂ u y ∂ x \dfrac{u_y \left(x+\Delta x,y\right)-u_y \left(x,y\right)}{\Delta x}\to \dfrac{\partial u_y }{\partial x} Δ x u y ( x + Δ x , y ) − u y ( x , y ) → ∂ x ∂ u y
Using trigonometry we can see that
tan ( γ 1 ) = u y ( x + Δ x , y ) − u y ( x , y ) Δ x → ∂ u y ∂ x \tan \left(\gamma_1 \right)=\dfrac{u_y \left(x+\Delta x,y\right)-u_y \left(x,y\right)}{\Delta x}\to \dfrac{\partial u_y }{\partial x} tan ( γ 1 ) = Δ x u y ( x + Δ x , y ) − u y ( x , y ) → ∂ x ∂ u y
We assume small deformations such that we can apply the small angle approximation
tan ( γ 1 ) ≈ γ 1 \tan \left(\gamma_1 \right)\approx \gamma_1 tan ( γ 1 ) ≈ γ 1
The total shear angle is given by
γ x y = γ 1 + γ 2 \gamma_{x y} =\gamma_1 +\gamma_2 γ x y = γ 1 + γ 2
So we get the total shear strain
γ x y = ∂ u y ∂ x + ∂ u x ∂ y \gamma_{x y} =\dfrac{\partial u_y }{\partial x}+\dfrac{\partial u_x }{\partial y} γ x y = ∂ x ∂ u y + ∂ y ∂ u x
This reasoning is extended into 3D such that we get
ε z = ∂ u z ∂ z , γ x z = ∂ u x ∂ z + ∂ u z ∂ x , γ y z = ∂ u y ∂ z + ∂ u z ∂ y \varepsilon_z =\dfrac{\partial u_z }{\partial z},\gamma_{x z} =\dfrac{\partial u_x }{\partial z}+\dfrac{\partial u_z }{\partial x},{ \gamma }_{y z} =\dfrac{\partial u_y }{\partial z}+\dfrac{\partial u_z }{\partial y} ε z = ∂ z ∂ u z , γ x z = ∂ z ∂ u x + ∂ x ∂ u z , γ yz = ∂ z ∂ u y + ∂ y ∂ u z
In total we get six strains, which can be represented in a matrix
ε = [ ε x 1 2 γ x y 1 2 γ x z 1 2 γ x y ε y 1 2 γ y z 1 2 γ x z 1 2 γ y z ε z ] \bm \varepsilon =\left\lbrack \begin{array}{ccc}
\varepsilon_x & \dfrac{1}{2}\gamma_{x y} & \dfrac{1}{2}\gamma_{x z} \\
\dfrac{1}{2}\gamma_{x y} & \varepsilon_y & \dfrac{1}{2}\gamma_{y z} \\
\dfrac{1}{2}\gamma_{x z} & \dfrac{1}{2}\gamma_{y z} & \varepsilon_z
\end{array}\right\rbrack ε = ⎣ ⎡ ε x 2 1 γ x y 2 1 γ x z 2 1 γ x y ε y 2 1 γ yz 2 1 γ x z 2 1 γ yz ε z ⎦ ⎤
where 1 2 γ x y \frac{1}{2}\gamma_{x y} 2 1 γ x y is known as the tensor shear strain. This is because the shear tensor can be also expressed using index notation
ε i j = 1 2 ( ∂ u i ∂ x j + ∂ u j ∂ x i ) \varepsilon_{i j} =\dfrac{1}{2}\left(\dfrac{\partial u_i }{\partial x_j }+\dfrac{\partial u_j }{\partial x_i }\right) ε ij = 2 1 ( ∂ x j ∂ u i + ∂ x i ∂ u j )
so for e.g., ε x = ε 11 = 1 2 ( ∂ u 1 ∂ x 1 + ∂ u 1 ∂ x 1 ) = ∂ u 1 ∂ x 1 = ∂ u x ∂ x \varepsilon_{x } =\varepsilon_{11} =\frac{1}{2}\left(\frac{\partial u_1 }{\partial x_1 }+\frac{\partial u_1 }{\partial x_1 }\right)=\frac{\partial u_1 }{\partial x_1 }=\frac{\partial u_x }{\partial x} ε x = ε 11 = 2 1 ( ∂ x 1 ∂ u 1 + ∂ x 1 ∂ u 1 ) = ∂ x 1 ∂ u 1 = ∂ x ∂ u x
ε x y = ε 12 = 1 2 ( ∂ u 1 ∂ x 2 + ∂ u 2 ∂ x 1 ) = ∂ u x ∂ y + ∂ u y ∂ x \varepsilon_{x y} =\varepsilon_{12} =\dfrac{1}{2}\left(\dfrac{\partial u_1 }{\partial x_2 }+\dfrac{\partial u_2 }{\partial x_1 }\right)=\dfrac{\partial u_x }{\partial y}+\dfrac{\partial u_y }{\partial x} ε x y = ε 12 = 2 1 ( ∂ x 2 ∂ u 1 + ∂ x 1 ∂ u 2 ) = ∂ y ∂ u x + ∂ x ∂ u y
The stresses can be expressed in the same way
σ = [ σ x τ x y τ x z τ x y σ y τ y z τ x z τ y z σ z ] \sigma =\left\lbrack \begin{array}{ccc}
\sigma_x & \tau_{x y} & \tau_{x z} \\
\tau_{x y} & \sigma_y & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & \sigma_z
\end{array}\right\rbrack σ = ⎣ ⎡ σ x τ x y τ x z τ x y σ y τ yz τ x z τ yz σ z ⎦ ⎤
Deriving the force equilibrium
On an infinitesimal element, we can assume σ y ( x , y ) \sigma_y \left(x,y\right) σ y ( x , y ) and σ y ( x , y + Δ y ) \sigma_y \left(x,y+\Delta y\right) σ y ( x , y + Δ y ) are constant in the x − x- x − direction, and do the corresponding assumption for the other two directions. This helps simplify the following force equilibrium equations
∑ F x = 0 ⇒ Δ σ x Δ y + Δ τ y x Δ x + f x Δ x Δ y = 0 \sum F_x =0\Rightarrow {\Delta \sigma }_x \Delta y+{\Delta \tau }_{y x} \Delta x+f_x \Delta x\Delta y=0 ∑ F x = 0 ⇒ Δ σ x Δ y + Δ τ y x Δ x + f x Δ x Δ y = 0
⟶ : ( σ x ( x + Δ x , y ) − σ x ( x , y ) ) Δ y + ( τ y x ( x , y + Δ y ) − τ y x ( x , y ) ) Δ x + f x Δ x Δ y = 0 \longrightarrow :\left(\sigma_x \left(x+\Delta x,y\right)-\sigma_x \left(x,y\right)\right)\Delta y+\left(\tau_{y x} \left(x,y+\Delta y\right)-\tau_{y x} \left(x,y\right)\right)\Delta x+f_x \Delta x\Delta y=0 ⟶: ( σ x ( x + Δ x , y ) − σ x ( x , y ) ) Δ y + ( τ y x ( x , y + Δ y ) − τ y x ( x , y ) ) Δ x + f x Δ x Δ y = 0
and similarly for the y − y- y − direction.
This leads to the system
− ∂ σ x ∂ x − ∂ τ y x ∂ y = f x − ∂ σ y ∂ y − ∂ τ x y ∂ x = f y \begin{array}{l}
-\dfrac{\partial \sigma_x }{\partial x}-\dfrac{\partial \tau_{y x} }{\partial y}=f_x \\
-\dfrac{\partial \sigma_y }{\partial y}-\dfrac{\partial \tau_{x y} }{\partial x}=f_y
\end{array} − ∂ x ∂ σ x − ∂ y ∂ τ y x = f x − ∂ y ∂ σ y − ∂ x ∂ τ x y = f y
This can be expressed using matrix notation
− ∂ ∂ x [ σ x τ x y ] − ∂ ∂ y [ τ x y σ x ] = [ f x f y ] -\dfrac{\partial }{\partial x}\left\lbrack \begin{array}{c}
\sigma_x \\
\tau_{x y}
\end{array}\right\rbrack -\dfrac{\partial }{\partial y}\left\lbrack \begin{array}{c}
\tau_{x y} \\
\sigma_x
\end{array}\right\rbrack =\left\lbrack \begin{array}{c}
f_x \\
f_y
\end{array}\right\rbrack − ∂ x ∂ [ σ x τ x y ] − ∂ y ∂ [ τ x y σ x ] = [ f x f y ]
Recall the gradient operator ∇ \nabla ∇
∇ = [ ∂ ∂ x ∂ ∂ y ] \nabla =\left\lbrack \begin{array}{c}
\dfrac{\partial }{\partial x}\\
\dfrac{\partial }{\partial y}
\end{array}\right\rbrack ∇ = ⎣ ⎡ ∂ x ∂ ∂ y ∂ ⎦ ⎤
The divergence of the stress matrix is
− ∇ ⋅ σ = f = − ∂ ∂ x [ σ x τ x y ] − ∂ ∂ y [ τ x y σ x ] = [ f x f y ] -\nabla \cdot \sigma =f=-\dfrac{\partial }{\partial x}\left\lbrack \begin{array}{c}
\sigma_x \\
\tau_{x y}
\end{array}\right\rbrack -\dfrac{\partial }{\partial y}\left\lbrack \begin{array}{c}
\tau_{x y} \\
\sigma_x
\end{array}\right\rbrack =\left\lbrack \begin{array}{c}
f_x \\
f_y
\end{array}\right\rbrack − ∇ ⋅ σ = f = − ∂ x ∂ [ σ x τ x y ] − ∂ y ∂ [ τ x y σ x ] = [ f x f y ]
Thus the short hand notation for the equilibrium equation using tensor notation is
− ∇ ⋅ σ = f \boxed{-\nabla \cdot \bm \sigma = \bm f} − ∇ ⋅ σ = f
A moment equilibrium around the midpoint gives:
τ x y ( x + Δ x , y ) Δ y 1 2 Δ x + τ x y ( x , y ) Δ y 1 2 Δ x − τ y x ( x , y ) Δ x 1 2 Δ y − τ y x ( x , y + Δ y ) Δ x 1 2 Δ y = 0 \tau_{x y} \left(x+\Delta x,y\right)\Delta y \dfrac{1}{2} \Delta x+\tau_{x y} \left(x,y\right)\Delta y \dfrac{1}{2} \Delta x-\tau_{y x} \left(x,y\right)\Delta x\dfrac{1}{2}\Delta y-\tau_{y x} \left(x,y+\Delta y\right)\Delta x \dfrac{1}{2} \Delta y=0 τ x y ( x + Δ x , y ) Δ y 2 1 Δ x + τ x y ( x , y ) Δ y 2 1 Δ x − τ y x ( x , y ) Δ x 2 1 Δ y − τ y x ( x , y + Δ y ) Δ x 2 1 Δ y = 0
This simplifies to
⇒ τ x y ( x + Δ x , y ) + τ x y ( x , y ) = τ y x ( x , y + Δ y ) + τ y x ( x , y ) \Rightarrow \tau_{x y} \left(x+\Delta x,y\right)+\tau_{x y} \left(x,y\right)=\tau_{y x} \left(x,y+\Delta y\right)+\tau_{y x} \left(x,y\right) ⇒ τ x y ( x + Δ x , y ) + τ x y ( x , y ) = τ y x ( x , y + Δ y ) + τ y x ( x , y )
with Δ x → 0 \Delta x\to 0 Δ x → 0 and Δ y → 0 \Delta y\to 0 Δ y → 0
we have τ x y = τ y x \tau_{xy} =\tau_{yx} τ x y = τ y x and similarly τ y z = τ z y \tau_{y z} =\tau_{z y} τ yz = τ zy and τ x z = τ z x \tau_{x z} =\tau_{z x} τ x z = τ z x . Thus the stress matrix is symmetric!
On a deformable body Ω \Omega Ω we apply an external force t t t somewhere on the boundary ∂ Ω \partial \Omega ∂ Ω .
The external force t t t is called a traction force, and has the unit force per length (2D) or force per area unit (3D).
On an infinitesimal boundary element the boundary can be said to be a small straight line, Δ s \Delta s Δ s , with an angle to the horizontal axis given by α \alpha α . We have a surface normal defined positive outwards from the body.
From the figure we can establish the following kinematic relations
Δ s = Δ x 2 + Δ y 2 Δ x = cos α Δ s Δ y = sin α Δ s \begin{array}{l}
\Delta s=\sqrt{\Delta x^2 +\Delta y^2 }\\
\Delta x=\cos \alpha \Delta s\\
\Delta y=\sin \alpha \Delta s
\end{array} Δ s = Δ x 2 + Δ y 2 Δ x = cos α Δ s Δ y = sin α Δ s
n = [ sin α , cos α ] \bm n=\left\lbrack \sin \alpha ,\cos \alpha \right\rbrack n = [ sin α , cos α ]
Equilibrium gives:
⟵ : σ x Δ y + τ x y Δ x = t x Δ s = σ x sin α + τ x y cos α = t x ↓ : σ x Δ x + τ x y Δ y = t y Δ s = σ x cos α + τ x y sin α = t y \begin{array}{l}
\longleftarrow :\sigma_x \Delta y+\tau_{x y} \Delta x=t_x \Delta s=\sigma_x \sin \alpha +\tau_{x y} \cos \alpha =t_x \\
\downarrow :\sigma_x \Delta x+\tau_{x y} \Delta y=t_y \Delta s=\sigma_x \cos \alpha +\tau_{x y} \sin \alpha =t_y
\end{array} ⟵: σ x Δ y + τ x y Δ x = t x Δ s = σ x sin α + τ x y cos α = t x ↓: σ x Δ x + τ x y Δ y = t y Δ s = σ x cos α + τ x y sin α = t y
⇒ σ x n x + τ x y n y = t x σ x n y + τ x y n y = t n } [ σ x τ x y τ x y σ y ] [ n x n y ] = [ t x t y ] \left.\Rightarrow \begin{array}{c}
\sigma_x n_x +\tau_{x y} n_y =t_x \\
\sigma_x n_y +\tau_{x y} n_y =t_n
\end{array}\right\rbrace \left\lbrack \begin{array}{cc}
\sigma_x & \tau_{x y} \\
\tau_{x y} & \sigma_y
\end{array}\right\rbrack \left\lbrack \begin{array}{c}
n_x \\
n_y
\end{array}\right\rbrack =\left\lbrack \begin{array}{c}
t_x \\
t_y
\end{array}\right\rbrack ⇒ σ x n x + τ x y n y = t x σ x n y + τ x y n y = t n } [ σ x τ x y τ x y σ y ] [ n x n y ] = [ t x t y ]
or
σ ⋅ n = t \boxed{\bm\sigma \cdot \bm n = \bm t} σ ⋅ n = t
A 2D geometry in pure tension along the x-axis experiences mostly stress in the x-direction and some amount of transversal contraction stress in the y-direction, but no shear stress.
σ = [ σ x τ x y τ x y σ y ] = [ σ x 0 0 σ y ] \sigma =\left\lbrack \begin{array}{cc}
\sigma_x & \tau_{x y} \\
\tau_{x y} & \sigma_y
\end{array}\right\rbrack =\left\lbrack \begin{array}{cc}
\sigma_x & 0\\
0 & \sigma_y
\end{array}\right\rbrack σ = [ σ x τ x y τ x y σ y ] = [ σ x 0 0 σ y ]
If we apply the same load case to the geometry but rotate the frame of reference than we will get shear stress since our matrix is expressed in terms of the x and y coordinates and not the local body coordinates.
σ = [ σ x τ x y τ x y σ y ] = [ σ x ≠ 0 τ x y ≠ 0 τ x y ≠ 0 σ y ≠ 0 ] \sigma =\left\lbrack \begin{array}{cc}
\sigma_x & \tau_{x y} \\
\tau_{x y} & \sigma_y
\end{array}\right\rbrack =\left\lbrack \begin{array}{cc}
\sigma_x \not= 0 & \tau_{x y} \not= 0\\
\tau_{x y} \not= 0 & \sigma_y \not= 0
\end{array}\right\rbrack σ = [ σ x τ x y τ x y σ y ] = [ σ x = 0 τ x y = 0 τ x y = 0 σ y = 0 ]
Computing these "local coordinate stresses" is important since it gives us an understanding if the stress is in tension or compression. This change of reference system such that we get rid of the shear stress is called Principal stress .
If the traction is normal to the surface, then we can write
t = λ n t=\lambda n t = λn
where λ \lambda λ denotes the principal stress as a scalar value. In general 2D we can write this
σ ⋅ n = t ⇒ σ ⋅ n = λ n \sigma \cdot \mathit{\mathbf{n} }=t\Rightarrow \sigma \cdot \mathit{\mathbf{n} }=\lambda \mathit{\mathbf{n} } σ ⋅ n = t ⇒ σ ⋅ n = λ n
or
( σ − λ I ) ⋅ n = 0 \left(\sigma -\lambda I\right)\cdot \mathit{\mathbf{n} }=0 ( σ − λ I ) ⋅ n = 0
This is an eigenvalue problem
We can find non-zero solutions by solving
det ( σ − λ I ) = 0 \det \left(\sigma -\lambda I\right)=0 det ( σ − λ I ) = 0
∣ σ x − λ σ x y σ x y σ y − λ ∣ = ( σ x − λ ) ( σ y − λ ) − σ x y 2 = 0 \left|\begin{array}{cc}
\sigma_x -\lambda & \sigma_{x y} \\
\sigma_{x y} & \sigma_y -\lambda
\end{array}\right|=\left(\sigma_x -\lambda \right)\left(\sigma_y -\lambda \right)-{\sigma_{x y} }^2 =0 ∣ ∣ σ x − λ σ x y σ x y σ y − λ ∣ ∣ = ( σ x − λ ) ( σ y − λ ) − σ x y 2 = 0
λ 2 − ( σ x + σ y ) ⏟ t r a c e ( σ ) λ + σ x σ y − σ x y 2 ⏟ det ( σ ) = 0 \lambda^2 -\underset{\mathrm{trace}\left(\sigma \right)}{\underbrace{\left(\sigma_x +\sigma_y \right)} } \lambda +\underset{\det \left(\sigma \right)}{\underbrace{\sigma_x \sigma_y -{\sigma_{x y} }^2 } } =0 λ 2 − trace ( σ ) ( σ x + σ y ) λ + d e t ( σ ) σ x σ y − σ x y 2 = 0
The roots to this equation, λ I \lambda_I λ I and λ I I \lambda_{\mathrm{II} } λ II are the principal stresses in this context. Usually we denote the principal stress with a numbered subindex using either roman or arabic numbering.
Using the principal stresses in a general 3D stress state, σ 1 , σ 2 , σ 3 \sigma_1 ,\sigma_2 ,\sigma_3 σ 1 , σ 2 , σ 3 we can define the von Mises stress
σ v M = 1 2 [ ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 3 − σ 1 ) 2 ] \sigma_{\mathrm{vM} } =\sqrt{\dfrac{1}{2}\left\lbrack {\left(\sigma_1 -\sigma_2 \right)}^2 +{\left(\sigma_2 -\sigma_3 \right)}^2 +{\left(\sigma_3 -\sigma_1 \right)}^2 \right\rbrack } σ vM = 2 1 [ ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 3 − σ 1 ) 2 ]
or using the general 3D stress components
σ v M = 1 2 [ ( σ x − σ y ) 2 + ( σ y − σ z ) 2 + ( σ z − σ x ) 2 + 6 ( σ x y 2 + σ y z 2 + σ z x 2 ) ] \sigma_{\mathrm{vM} } =\sqrt{\dfrac{1}{2}\left\lbrack {\left(\sigma_x -\sigma_y \right)}^2 +{\left(\sigma_y -\sigma_z \right)}^2 +{\left(\sigma_z -\sigma_x \right)}^2 +6\left({\sigma_{x y} }^2 +{\sigma_{y z} }^2 +{\sigma_{z x} }^2 \right)\right\rbrack } σ vM = 2 1 [ ( σ x − σ y ) 2 + ( σ y − σ z ) 2 + ( σ z − σ x ) 2 + 6 ( σ x y 2 + σ yz 2 + σ z x 2 ) ]
For general plane stress (2D) this simplifies since σ z = σ y z = σ z x = 0 \sigma_z =\sigma_{y z} =\sigma_{z x} =0 σ z = σ yz = σ z x = 0
σ v M = σ x 2 − σ x σ y + σ y 2 + 3 σ x y 2 \sigma_{\mathrm{vM} } =\sqrt{ {\sigma_x }^2 -\sigma_x \sigma_y +{\sigma_y }^2 +3{\sigma_{x y} }^2 } σ vM = σ x 2 − σ x σ y + σ y 2 + 3 σ x y 2
More info on the failure theories is given by the efficient engineer .