Moments

Download this page as a Matlab LiveScript

Table of contents

Moment or Torque

A moment, also known as the torque can be described as a "force to generate a rotation", as it generates an angular acceleration if not in ballance.

A moment has the unit Newton-meter [Nm], it is a vector, and appears around a point as the product of a moment arm (hävarm), dd, and an applied force, FF, perpendicular to the moment arm, see the figures below.

MO=r×F{\mathit{\mathbf{M} } }_O =\mathit{\mathbf{r} }\times \mathit{\mathbf{F} }

and the scalar counterpart

M=F  dM=F\;d

The moment vector is defined as the vector M\mathit{\mathbf{M} } that is perpendicular to the plan that is spanned by the position vector, r\mathit{\mathbf{r} } and the force vector F\mathit{\mathbf{F} }. The direction of the moment vector is given by the right-hand rule.

r\mathit{\mathbf{r} } is a position vector from the point about which the moment is being calculated to the line along which F\mathit{\mathbf{F} } is acting (action line).

In Matlab we compute the cross product by

syms F_x F_y F_z 
syms r_x r_y r_z
F = [F_x F_y F_z].';
r = [r_x r_y r_z].';
M = cross(r,F)
(FzryFyrzFxrzFzrxFyrxFxry) \left(\begin{array}{c} F_z \,r_y -F_y \,r_z \\ F_x \,r_z -F_z \,r_x \\ F_y \,r_x -F_x \,r_y \end{array}\right)
MO=[MxMyMz]=[FzryFyrzFxrzFzrxFyrxFxry]=[FzryFyrz(FzrxFxrz)FyrxFxry]=r×F{\mathit{\mathbf{M} } }_O =\left\lbrack \begin{array}{c} M_x \\ M_y \\ M_z \end{array}\right\rbrack =\left\lbrack \begin{array}{c} F_z \,r_y -F_y \,r_z \\ F_x \,r_z -F_z \,r_x \\ F_y \,r_x -F_x \,r_y \end{array}\right\rbrack =\left\lbrack \begin{array}{c} F_z \,r_y -F_y \,r_z \\ -\left(F_z \,r_x -F_x \,r_z \right)\\ F_y \,r_x -F_x \,r_y \end{array}\right\rbrack =\mathit{\mathbf{r} }\times \mathit{\mathbf{F} } M=r×F=F×r\mathit{\mathbf{M} }=\mathit{\mathbf{r} }\times \mathit{\mathbf{F} }=-\mathit{\mathbf{F} }\times \mathit{\mathbf{r} } Mr  and  MF\mathit{\mathbf{M} }\bot \mathit{\mathbf{r} }\;\textrm{and}\;\mathit{\mathbf{M} }\bot \mathit{\mathbf{F} }

1: Trivial examples of how the cross product works, showcasing the independency on the point of application along the line of application.

Example 1 - 2D Trivial case

clear
r = [3,0,0];
F = 10*[0,1,0];
Mz = 3*10
Mz = 30
M = cross(r,F)
M = 1x3    
     0     0    30

Note that the yy component in r can take any value, and the moment around zz will be the same, this is obvious since the xx distance does not change.

Example 2 - 2D general

eF = [4/5, 3/5, 0];
F = 10*eF;
OA = [3,-4,0];
Mz = 5*10
Mz = 50
M = cross(OA,F)
M = 1x3    
     0     0    50
t=2;
r = OA + [4/5,3/5,0]*t
r = 1x3    
     4.6    -2.8     0
M = cross(r,F)
M = 1x3    
     0     0    50

Here we can vary the parameter tt to set the point of application to any point along the line of application and the moment around the zz axis will be unaffected. In fact we can set the parameter tt to a symbolic variable and we can see that tt vanishes in the cross product.

syms t
r = OA + [4/5,3/5,0]*t
M = cross(r,F)
r=(4t5+33t540) \bm r = \left(\begin{array}{ccc} \frac{4\,t}{5}+3 & \frac{3\,t}{5}-4 & 0 \end{array} \right)
M=(0050) \bm M = \left(\begin{array}{ccc} 0 & 0 & 50 \end{array}\right)

Example 3 - 3D case

Let F=100NF=100\mathrm{N} in the line AB. Determine the moment O. Determine the moment around the z-axis.

OA=[5,0,2]T\overrightarrow{\textrm{OA} } ={\left\lbrack 5,0,2\right\rbrack }^T OB=[3,1,0]T\overrightarrow{\textrm{OB} } ={\left\lbrack 3,1,0\right\rbrack }^T r=OB\mathit{\mathbf{r} }=\overrightarrow{\textrm{OB} } F=F  eAB\mathit{\mathbf{F} }=F\;{\mathit{\mathbf{e} } }_{\textrm{AB} } eAB=ABAB{\mathit{\mathbf{e} } }_{\textrm{AB} } =\dfrac{\overrightarrow{\textrm{AB} } }{|\overrightarrow{\textrm{AB} } |} MO=r×F{\mathit{\mathbf{M} } }_O =\mathit{\mathbf{r} }\times \mathit{\mathbf{F} } MOz=MOezM_{\textrm{Oz} } =M_O \cdot {\mathit{\mathbf{e} } }_z
clear
OA = [5,0,2]';
OB = [3,1,0]';
AB = OB-OA;
eAB = AB/norm(AB)
eAB = 3x1    
   -0.6667
    0.3333
   -0.6667
F = 100*eAB
F = 3x1    
  -66.6667
   33.3333
  -66.6667
r = OB;

MO = cross(OA,F)
MO = 3x1    
  -66.6667
  200.0000
  166.6667
MO = cross(OB,F)
MO = 3x1    
  -66.6667
  200.0000
  166.6667
MOz = dot(MO,[0,0,1])
MOz = 166.6667

Example 4 - General projection

Compute the moment around the OA axis.

OA = [1,4,0].';
OB = [1,4,2].';
OC = [5,0,0].';
BC = OC-OB;
F = 120*BC/norm(BC)
F = 3x1    
    80
   -80
   -40
MO = cross(OB,F)
MO = 3x1    
     0
   200
  -400
MO = cross(OC,F)
MO = 3x1    
     0
   200
  -400
eOA = OA/norm(OA)
eOA = 3x1    
    0.2425
    0.9701
         0
MOA=MOeOA=MOOAOAOAOAM_{\textrm{OA} } ={\mathit{\mathbf{M} } }_O \cdot e_{\textrm{OA} } =\left|\dfrac{M_O \cdot \overrightarrow{\textrm{OA} } }{\overrightarrow{\textrm{OA} } \cdot \overrightarrow{\textrm{OA} } }\overrightarrow{\textrm{OA} } \right|
MOA = norm(dot(MO,OA)/dot(OA,OA)*OA)
MOA = 194.0285
MOA = dot(MO,eOA)
MOA = 194.0285