Download this page as a Matlab LiveScript

Table of contents

Shear stress

The average shear stress is given by

τ=TA\tau =\dfrac{T}{A}

where TT denotes the shear force and is tangential to the shear plane, AA is the area on which the shearing acts.

Example 1

Determine the shear stress in the cylindrical pin with a cross sectional area of AA subjected to a force PP.

Solution

FBD of the pin

{P2T=0τ=TA\left\lbrace \begin{array}{ll} P-2T=0 & \\ \tau =\dfrac{T}{A} & \end{array}\right. T=P2,τ=P2A\Rightarrow T=\dfrac{P}{2},\tau =\dfrac{P}{2A}

Example 2

Determine the stresses in the cut at an angle φ\varphi. At which angle do we get the highest shear stress? Plot!

Solution

Cut and FBD

Nx=Ncosφ,  Ny=NsinφTx=Tsinφ,  Ty=Tcosφσφ=NA/sinφ,τφ=TA/sinφ \def\arraystretch{2.5} \begin{array}{cc} N_x = N \cos\varphi,\; N_y=N\sin\varphi \\ T_x = T \sin\varphi,\; T_y=T\cos\varphi \\ \sigma_\varphi = \dfrac{N}{A/\sin\varphi},\quad \tau_\varphi = \dfrac{T}{A/\sin\varphi} \\ \end{array} {N  sinφ+T  cosφP=0N  cosφ+T  sinφ=0σφ=NA/sinφτφ=TA/sinφ \def\arraystretch{1.5} \left\lbrace \begin{array}{ll} N\;\sin \varphi +T\;\cos \varphi -P=0 & \\ -N\;\cos \varphi +T\;\sin \varphi =0 & \\ \sigma_{\varphi } =\dfrac{N}{A/\sin \varphi } & \\ \tau_{\varphi } =\dfrac{T}{A/\sin \varphi } & \end{array}\right. N=P  sinφ,T=P  sinφ,σφ=P  sin2φA,τφ=P  sinφ  cosφA\Rightarrow N=P\;\sin \varphi ,\quad T=P\;\sin \varphi ,\quad \sigma_{\varphi } =\dfrac{P\;\sin^2 \varphi }{A} ,\quad \tau_{\varphi } =\dfrac{P\;\sin \varphi \;\cos \varphi }{A}
clear
syms N T varphi P A sigma_varphi tau_varphi

eq = [N*sin(varphi) + T*cos(varphi) - P == 0
      -N*cos(varphi) + T*sin(varphi) == 0
      sigma_varphi == N/(A/sin(varphi))
      tau_varphi == T/(A/sin(varphi))]
(Tcos(φ)P+Nsin(φ)=0Tsin(φ)Ncos(φ)=0σφ=Nsin(φ)Aτφ=Tsin(φ)A) \left(\begin{array}{c} T\,\cos \left(\varphi \right)-P+N\,\sin \left(\varphi \right)=0\\ T\,\sin \left(\varphi \right)-N\,\cos \left(\varphi \right)=0\\ \sigma_{\varphi } =\frac{N\,\sin \left(\varphi \right)}{A}\\ \tau_{\varphi } =\frac{T\,\sin \left(\varphi \right)}{A} \end{array}\right)
[N,T,sigma_varphi,tau_varphi] = solve(eq, [N,T,sigma_varphi,tau_varphi]);
simplify([N,T,sigma_varphi,tau_varphi])
(Psin(φ)Pcos(φ)Psin(φ)2APsin(2φ)2A) \left(\begin{array}{cccc} P\,\sin \left(\varphi \right) & P\,\cos \left(\varphi \right) & \frac{P\,{\sin \left(\varphi \right)}^2 }{A} & \frac{P\,\sin \left(2\,\varphi \right)}{2\,A} \end{array}\right)
P = 1; A = 1;

figure; hold on
fplot(subs(N), [0,pi/2], 'linewidth', 2, 'DisplayName', '$N/P$')
fplot(subs(T), [0,pi/2], 'linewidth', 2, 'DisplayName', '$T/P$')
fplot(subs(sigma_varphi), [0,pi/2], 'linewidth', 2, 'DisplayName', '$\sigma_\varphi A / P$')
fplot(subs(tau_varphi), [0,pi/2], 'linewidth', 2, 'DisplayName', '$\tau_\varphi A / P$')
legend('Interpreter','latex')
xlabel('$\varphi$', 'Interpreter','latex')

As we can see, the maximum shear stress is at π4=45\frac{\pi }{4}={45}^{\circ }.

Example 3

Dimension the pin in A and in B is the maximum allowable shear stress is 180MPa, use a safety factor of 1.5.

Solution

FBD of the rigid beam.

Equilibrium equations give:

{MA=0:FByrABFGrAG=0FB456300002=0:FBxAx=0FB35=Ax:AyFG+FByAy=30000FB45\left\lbrace \begin{array}{ll} \sum M_A =0:F_{\textrm{By} } r_{\textrm{AB} } -F_G r_{\textrm{AG} } =0 & \Rightarrow F_B \dfrac{4}{5}\cdot 6-30000\cdot 2=0\\ \to :F_{\textrm{Bx} } -A_x =0 & \Rightarrow F_B \dfrac{3}{5}=A_x \\ \uparrow :A_y -F_G +F_{\textrm{By} } & \Rightarrow A_y =30000-F_B \dfrac{4}{5} \end{array}\right. FA=[Ax,Ay]=Ax2+Ay2F_A =|\left\lbrack A_x ,A_y \right\rbrack |=\sqrt{A_x^2 +A_y^2 }
VA=12FAV_A =\dfrac{1}{2}F_A τA=VAAAAA=τAVA=(dA2)2π\tau_A =\dfrac{V_A }{A_A }\Rightarrow A_A =\dfrac{\tau_A }{V_A }={\left(\dfrac{d_A }{2}\right)}^2 \pi
VB=FBV_B =F_B τB=VBAB=VB(dB2)2π\tau_B =\dfrac{V_B }{A_B }=\dfrac{V_B }{ {\left(\dfrac{d_B }{2}\right)}^2 \pi }
clear
syms d_A positive
F_A = 21360
tau = 180e6/1.5 %% N/m
V_A = 1/2*F_A;
d_A = solve(tau == V_A / ( (d_A/2)^2*pi) , d_A)
d_A =
89500π \frac{\sqrt{89} }{500\,\sqrt{\pi } }
d_A = vpa(d_A) %m
d_A =
0.010645107772184811425477557121826 0.010645107772184811425477557121826
d_A = d_A*1000 %mm
d_A =
10.645107772184811425477557121826 10.645107772184811425477557121826
syms d_B positive
V_B = 12500; %N
d_B = solve(tau == V_B/( (d_B/2)^2*pi ), d_B)
d_B =
6001200π \frac{\sqrt{600} }{1200\,\sqrt{\pi } }
d_B = vpa(d_B) %m
d_B =
0.01151647164904451597550815486773 0.01151647164904451597550815486773
d_B = d_B*1000 %mm
d_B =
11.51647164904451597550815486773 11.51647164904451597550815486773

Conclusion: The pin in A needs to be at least 11mm and the pin in B needs to be at least 12mm. For easier manufacturing, just use 12mm pins in both connections.