Table of contents

Strain

ε:=LL0L0=δL0\boxed{\varepsilon :=\dfrac{L-L_0 }{L_0 }=\dfrac{\delta }{L_0 }}

where δ\delta denotes deformation and ε\varepsilon is defined as the engineering strain, or linear strain. This definition only holds under the assumption δ<<L\delta << L.

ε:=elongationoriginal  length=u(x+Δx)u(x)Δxd  ud  x=ε\varepsilon :=\dfrac{\textrm{elongation} }{\textrm{original}\;\textrm{length} }=\dfrac{u\left(x+\Delta x\right)-u\left(x\right)}{\Delta x}\to \boxed{\dfrac{d\;u}{d\;x}=\varepsilon}

⚠ Note

Note that engineering strain cannot be added:

ε=δ1+δ2L1ε1+ε2=δ1L0+δ0L0+δ1\varepsilon =\dfrac{\delta_1 +\delta_2 }{L_1 }\not= \varepsilon_1 +\varepsilon_2 =\dfrac{\delta_1 }{L_0 }+\dfrac{\delta_0 }{L_0 +\delta_1 }

Instead we can use logarithmic strain, which we define as such

Consider a difference in length, ΔL\Delta L at an arbitrary length LL, the difference in strain is given by

Δε=ΔLL\Delta \varepsilon =\dfrac{\Delta L}{L}

if we consider the limit ΔL0\Delta L\to 0

limΔL0dε=1Ld  L\lim_{\Delta L\to 0} d\varepsilon =\dfrac{1}{L}d\;L

Now integrate over the whole length

0εdε=L0L1Ld  LεL=ln(LL0)\int_0^{\varepsilon } d\varepsilon =\int_{L_0 }^L \dfrac{1}{L}d\;L\Rightarrow \boxed{\varepsilon_L =\ln \left(\dfrac{L}{L_0 }\right)}

this strain can be added.

We see especially when δ<<L\delta << L the logarithmic strain becomes the linear strain: ε=δL0\varepsilon =\frac{\delta }{L_0 }. As it should. To show this, let L=L0+δL=L_0 +\delta and using Taylor expansion around δ=0\delta =0 we get

clear
syms L_0 delta
taylor(log( (L_0+delta)/L_0 ), delta, 0, 'order', 4)
δL0δ22L02+δ33L03 \frac{\delta }{L_0 }-\frac{\delta^2 }{2\,{L_0 }^2 }+\frac{\delta^3 }{3\,{L_0 }^3 }
εL=ln(LL0)=δL0δ22L02+δ33L03\varepsilon_L =\ln \left(\dfrac{L}{L_0 }\right)=\dfrac{\delta }{L_0 }-\dfrac{\delta^2 }{2L_0^2 }+\dfrac{\delta^3 }{3L_0^3 }-\cdots

or

εL=ln(LL0)=εε22+ε33O(δn)  where  n2\varepsilon_L =\ln \left(\dfrac{L}{L_0 }\right)=\varepsilon \underset{O\left(\delta^n \right)\;\textrm{where}\;n\ge 2}{\underbrace{-\dfrac{\varepsilon^2 }{2}+\dfrac{\varepsilon^3 }{3}-\cdots } }

L0 = 1;
syms delta
eps1 = taylor(log( (L0+delta)/L0 ), delta, 0, 'order', 2);
eps2 = taylor(log( (L0+delta)/L0 ), delta, 0, 'order', 3);
eps3 = taylor(log( (L0+delta)/L0 ), delta, 0, 'order', 4);

range = [-0.5,1];
figure; hold on
fplot(log((L0+delta)/L0), range,'r','Linewidth',2)
fplot(0,range,'-k','HandleVisibility','off')

fplot(eps1, range,'b','Linewidth',1)
fplot(eps2, range,'m','Linewidth',1)
fplot(eps3, range,'g','Linewidth',1)

xlabel('$\delta$','Interpreter','latex')
ylabel('$\varepsilon$','Interpreter','latex')
set(gca,'Fontsize',14)
grid on
legend('show','location','northwest')

Example 1

A rod is compressed from 140mm to 120mm. Determine the linear and logarithmic strain.

We have

δ=120140=20mm\delta =120-140=-20\textrm{mm} ε=20140=0.142857\varepsilon =-\dfrac{20}{140}=-0\ldotp 142857 εL=ln(120140)=0.154151\varepsilon_L =\ln \left(\dfrac{120}{140}\right)=-0\ldotp 154151

Temperature strain

Materials can get deformed by heat. The deformation due to head can be modeled using the temperature expansion coefficient, α  [1/°C]\alpha \;\left\lbrack 1/\degree \mathrm{C}\right\rbrack

δ=L0αΔT=L0εtemp\delta =L_0 \alpha \Delta T=L_0 \varepsilon_{\textrm{temp} } L=L0+L0αΔTL=L_0 +L_0 \alpha \Delta T

We can add mechanical strain to thermal strain

εtot=εelast+εtemp\varepsilon_{\textrm{tot} } =\varepsilon_{\textrm{elast} } +\varepsilon_{\textrm{temp} } εtot=σE+αΔT\varepsilon_{\textrm{tot} } =\dfrac{\sigma }{E}+\alpha \Delta T

Shear strain

Strain due to shearing can be modeled by exposing the quad in the figure above to a stress which is horizontal and parallel to its lower edge which is immovable. Then the quad will deform into a parallelogram with the shear angle γ\gamma. From the right figure we can see the conservation of volume (area) gives the relation

a2=a  h  cosγa^2 =a\;h\;\cos \gamma

where h=A  Bh=A\;B^{\prime } and with the assumption of γ\gamma being small (small angle assumption) we get cosγ1\cos \gamma \approx 1and hah\to a. The shear strain is thus defined as

γtanγ=B  Ba=δa\boxed{\gamma \approx \tan \gamma } =\dfrac{|B\;B^{\prime } |}{a}=\dfrac{\delta }{a}

which is analogous to ε=δ/L0\varepsilon =\delta /L_0.

The material relation is given by

τ=Gγ \boxed{\tau =G\gamma}

where GG is known as the shear modulus and it can be shown that

G=E2(1+ν)\boxed{ G=\dfrac{E}{2\left(1+\nu \right)} }

thus the shear modulus is related to the Young's modulus EE and Poisson's ratio ν\nu.